
Rethinking the Networking Stack for
Serverless Environments: A Sidecar Approach

Vishwanath Seshagiri

Emory University

Atlanta, USA

Abhinav Gupta

Columbia University

NYC, USA

Vahab Jabrayilov

Columbia University

NYC, USA

AvaniWildani

Cloudflare and Emory University

Atlanta, USA

Kostis Kaffes

Columbia University

NYC, USA

Abstract
Serverlessplatformsrelyon legacynetworkingstacks for com-

munication and data movement. We quantitatively analyze

theperformanceof these stacks andshowtheirmismatchwith

highly consolidated, virtualized modern serverless environ-

ments, focusing on Firecracker, the most common serverless

virtualization framework. As serverless applications grow in

complexity and interaction, the resulting network bottleneck

is a prime source of user-perceived, end-to-end latency. In this

paper, we present a detailed vision of a new, sidecar-based

networking stack for serverless environments. Our primary

design goal is to provide low-overhead networking while

maintaining existing security guarantees. We outline the re-

search challenges in both the control and the data plane that

the community needs to tackle before such a sidecar architec-

ture can be used in practice.

CCS Concepts
• Software and its engineering→Operating systems; •
Computer systems organization→Cloud computing.

Keywords
Serverless Networking, Sidecar Architecture, Virtualization,

Network Performance, Scalability, Isolation

ACMReference Format:
Vishwanath Seshagiri, Abhinav Gupta, Vahab Jabrayilov, Avani

Wildani, and Kostis Kaffes. 2024. Rethinking the Networking Stack

for Serverless Environments: A Sidecar Approach. InACM Sympo-
siumonCloudComputing (SoCC ’24),November 20–22, 2024, Redmond,

Permission tomakedigitalorhardcopiesofall orpartof thiswork forpersonal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components

of this workmust be honored. For all other uses, contact the owner/author(s).

SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1286-9/24/11

https://doi.org/10.1145/3698038.3698561

WA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3698038.3698561

1 Introduction
Serverless computing is a popular cloud computing paradigm,

offering developers a pay-per-use model of application de-

velopment where the cloud provider takes responsibility for

running, scaling, and failure recovery of the application func-

tions. These functions are typically isolated, short-lived, and

have small CPU and memory footprints, requiring packing

hundreds of them in each server [31, 32]. While there is a sig-

nificant body of work on managing points of tension in these

deployments, including scheduling [15, 16], reducing start-up

overheads [26, 37, 43], and sidecar proxies [27], we argue that

the networking stack is a critical, overlooked, bottleneck in

serverless deployments.

There are several sources of network overhead in server-

less applications. Function workflows often execute complex

invocation DAGs (Fig. 1) that necessitate complex function-

to-function communication [11, 20, 28, 40]. Functions also

often retrieve the data they need to process from external

storage services over the network, such as AWS S3 and Dy-

namoDB [9, 14, 21, 22]. The networking stack can therefore be

the bottleneck that determines the user-perceived end-to-end

latency in serverless applications, and there is a pressing need

to evaluate and optimize it [1, 6].

Serverless providers like AWS Lambda and popular open-

source systems like vHive [37] deploy functions using Fire-

cracker, a lightweight virtualization platform built on top of

KVM. Such lightweight isolation platforms offer a balance be-

tween security and performance, allowing for rapid function

instantiation and lowmemory footprint while maintaining

a high degree of isolation between tenants. However, this

approach introduces additional networking stack complexity,

as each function instance typically requires its own virtu-

alized network interface that then communicates with the

host’s networking stack, impacting latency and throughput

in serverless environments.

https://orcid.org/0000-0001-7466-4369
https://orcid.org/0009-0005-7959-9478
https://orcid.org/0000-0001-9182-3085
https://orcid.org/0000-0001-9457-8863
https://orcid.org/0000-0002-0517-7206
https://doi.org/10.1145/3698038.3698561
https://doi.org/10.1145/3698038.3698561
https://doi.org/10.1145/3698038.3698561

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Vishwanath Seshagiri, Abhinav Gupta, Vahab Jabrayilov, AvaniWildani, and Kostis Kaffes

A

B

C

D

E

Figure 1: An example Serverless DAG

We comprehensively benchmark Firecracker’s TUN/TAP-

based networking stack, demonstrating that it is insufficient

to supportmodern serverless deployments.Wefind that the la-

tency and throughput achieved by each Firecracker microVM

is significantly worse than that of applications running on

bare-metal. For example, a single microVM can only use 5.2

Gbps of bandwidth and achieve only as low as 80 𝜇sec p99

latency. The stack also suffers from poor scalability as the la-

tency explodes in realistic deployments with a large number

of Firecracker instances.

In this paper, we present a vision of a modern serverless

networking stack that is sidecar-based. Our stack runs as a
separate process in the host’s userspace and is shared among

all the VMs running in a host. We argue that a sidecar-based

stack can provide performance, scalability, isolation, and the

ability to enable direct function-to-function communication.

Finally, we identify a list of research challenges that need

to be addressed to effectively implement our sidecar-based

stack and overcome the current shortcomings in serverless

networking. These challenges span multiple aspects of the

networking stack design and implementation. Security and

isolation are paramount, requiring innovative approaches to

guarantee tenant separation while maintaining performance.

Achieving zero-copydata transfer from theNetwork Interface

Card (NICs) to the guest application presents another signif-

icant challenge, particularly in a multi-tenant environment

where packet destinations are not immediately known. Scal-

ability issues arise when supporting a large number of VMs

on a single machine, necessitating efficient connection pool-

ing and state management techniques. Additionally, close

coordination between the networking stack and the func-

tion invocation scheduler is crucial in enabling performant

function-to-function communication. Wemust develop effi-

cient routing strategies for function-to-function communica-

tion, ensuring that traffic is directed to the correct host and

target VM. Addressing these challenges will make the server-

less stack more efficient in terms of resource utilization, sig-

nificantly increasing throughput and reducing latency. This

improved performance could unlock new use cases for server-

less computing, enabling more complex and data-intensive

applications to leverage the serverless paradigm.

2 Motivation
2.1 The Need for Fast Networking

Serverless DAGs. Many modern applications that make use

of serverless platforms deploy the applications as a Directed

AcyclicGraph (DAG),where the output of one function is sent

as the input to the next function, and so on. When a function

sends the output to another function, there is currently no

targeted communication available, instead it is sent into a

Pub-Sub queue from where the request is forwarded to the

next function[2]. The function is continuously polling this

queue to receive the requests, and if the function iswarm then

there is a trigger to reboot the function. Figure 1 depicts aDAG

involving a chain of functions encompassing various design

patterns characteristic of modern serverless architectures.

Each request to the system involves at least 2 network calls,

thus illustrating the importance of having a robust network-

ing stack for serverless platforms. Existing work on profiling

the serverless functions[10, 31, 32] showed a huge variability

in the functionexecution times, and in somecases thenetwork

stack takes a non-trivial chunk of function execution.

External Services. Serverless functions frequently need to
access external services for various operations, including data

storage, databasequeries,API calls, andmore.This interaction

with external services can introduce significant bottlenecks in

terms of throughput and latency, potentially undermining the

scalability and performance benefits of serverless architec-

tures. Recent research, such as PyWren [14], Apiary [22], and

Nightcore [13] has highlighted the impact of the networking

layer in serverless environments, particularly when dealing

with object storage services like Amazon S3, and in scenarios

involving the concurrent execution of numerous functions

performing data-intensive operations. Apiary found that the

communication latencies can be up to 80% of the overall la-

tency, even in a containarized environment; we expect the

overhead to be even more pronounced in a VM setup.

2.2 Firecracker Networking Stack
To explore the current limitations of the serverless network-

ing stack, we take a deeper dive into the networking stack

of Firecracker. To ensure security, a separate Firecracker pro-

cess is spawned for every microVM. Firecracker employs the

TUN/TAP[35] networking model to provide virtual NICs to

its microVMs. TUN and TAP are Linux kernel devices that

allow for the creation of virtual network interfaces. These

interfaces can be used to send and receive network packets

between user-space applications and the Linux Kernel. The

guest kernel reads/writes into the TUN device, which is tun-

neled by the TAP device in the host network stack. Currently,

Firecracker only supports TUN/TAP devices in a single queue,

Rethinking the Networking Stack for
Serverless Environments: A Sidecar Approach SoCC ’24, November 20–22, 2024, Redmond, WA, USA

where the packets processed in VM cannot be parallelized.

This is done using the read andwritev system calls[7].

However, TUN/TAP devices perform poorly as they are

implemented using file I/O operations. TUN/TAP involves

copying data buffers between user space and kernel space.

This copying process adds latency and consumes CPU cycles.

TUN/TAP’s copying of data buffers leads to inefficient mem-

ory management and decreased throughput. To illustrate this

problem, we performed a series of measurements with Fire-

cracker microVMs and collected the latency and throughput

measurements.

2.2.1 Experimental Setup. We evaluated the performance

and scalability of existing network stacks using iperf3 for
throughputandsockperf for latencymeasurements.Through-

put tests involved saturating the bandwidth and collecting

data after reaching a steady state. Latency tests used Sock-

perf’s ping-pong test, which measures server message pro-

cessing capacity. Experiments were conducted on two Cloud-

lab [12] Utah (d6515) nodes, each with a 32-core AMDCPU

andadual-portMellanoxConnectX-5NICproviding100Gbps

bandwidth. The nodes were connected via a dedicated 100

Gbps link to minimize external interference. We used Firectl

to deploy multiple the Firecracker VMs. Each VMwas allo-

cated its owndedicatedTUN/TAPdevice,whichwas then con-

nected to a sharednetwork bridge. This configuration allowed

us to test the scalability of the network stack as the number

of VMs increased while isolating each VM’s network traffic.

We tested several configurations:

1 Baremetal-to-baremetal (BM-BM): We deployed the

server applicationdirectly ononephysicalmachine and

the client application on the other. This setup serves

as our baseline, representing the maximum achievable

performance without virtualization overhead.

2 Baremetal-to-VM (BM-VM or VM-BM): In this setup,

we ran the server application inside individual guest

VMs on one physical machine while the client applica-

tion ran directly on the other physical machine (bare

metal). This configuration helps quantify the perfor-

mance impact of virtualization on the server side, as

well as the efficiency of network communication be-

tween virtualized and non-virtualized environments.

3 VM-to-VM(VM-VM):Wedeployedupto126Firecracker

VMs on each of the two physical machines, establish-

ing a one-to-one communication pattern between VMs

across the machines. This configuration represents a

highly virtualized environment, allowing us to assess

the scalability and performance of inter-VM communi-

cation in a dense deployment scenario.

For each configuration, we measured throughput, latency,

and CPU usage to comprehensively evaluate the network

stack’s performance under different virtualization scenarios.

1 5 10 15 20 25 30 35VM Count

101

102

Th
ro

ug
hp

ut
 (G

bp
s)

Per VM - VM
Total VM - VM
Per BM - BM
Total BM - BM
Per VM - BM
Total VM - BM

Figure 2: Throughput (Gbps) for experimental setup
comparing the performance for BM-BM, and VM-VM

1 5 10 15 20 25 30 35VM Count

102

p9
9

La
te

nc
y

(μ
se

c)

(a) Latencies (𝜇sec) per VM

1 5 10 15 20 25 30 35VM Count

102

103

M
es

sa
ge

s

VM - VM
BM - BM
VM - BM

(b) Total Messages received

Figure 3: Experimental setup comparing the latency
andmessages received for BM-BM,VM-VMandVM-BM
scenarios

2.2.2 Evaluation. Figure2presentsacomprehensiveanalysis

of throughput performance across all experimental scenarios,

delineatingbothaggregatebandwidthutilizationandper-host

bandwidth efficiency. Our findings reveal notable disparities

between virtualized and non-virtualized environments. The

virtualized configurations (VM-VM and BM-VM) exhibited

markedly diminished performance, even in single-VM de-

ployments, suggesting significant virtualization overhead. In

the context of single VM deployment within the Firecracker

host, we observed bandwidth utilization of 5.19% and 8.81%

for VM-VM and VM-BM configurations, respectively. This

represents a substantial underutilization of available network

resources. In contrast, a single non-virtualized application can

utilize 27.3% of the network bandwidth. Furthermore, based

on these observations, theoretically the bandwidth satura-

tion should occur at approximately 20 VMs for VM-VM and

13 VMs for VM-BM scenarios. However, our empirical data

diverged from these projections. Peak bandwidth utilization

was not achieved until the deployment of 35 VMs, a finding

that indicates non-linear scaling behavior in the system. This

discrepancy between projections and observed results under-

scores the complexity of network performance in virtualized

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Vishwanath Seshagiri, Abhinav Gupta, Vahab Jabrayilov, AvaniWildani, and Kostis Kaffes

environments and highlights the potential for unforeseen

interactions in multi-VM scenarios.

Firecracker VMs significantly underutilize network band-

width, with single VMs reaching only 5-9% of potential

throughput, andexhibitnon-linearscaling,peakingathigher-

than-predicted VM counts.

Figure3presents ananalysis of latency (Fig 3a) andmessage

throughput (Fig 3b) across various experimental configura-

tions. Our study utilizes the sockperf workload generator,

operating in a closed-loopmanner, which ensures subsequent

packet transmission only upon receipt of responses to all

previously sent packets. This methodology provides a con-

trolled environment for our observations, enabling precise

measurement of system performance under varying loads.

Our analysis reveals a substantial disparity in base latency

between baremetal-to-baremetal (BM-BM) and virtualized

deployments. In single VM scenarios, the latencies in virtu-

alized configurations were markedly higher, with VM-VM

and VM-BM configurations exhibiting increases of 600% and

350% respectively, compared to the baremetal configuration.

Notably, this significant latency differential persisted across

increasing VM counts, indicating a consistent virtualization

overhead. Concurrently, we observed a plateau in message

processing capacity at approximately 10 VMs. Beyond this

threshold, increasing the number of VMs led to a pronounced

elevation in latency, while the total number of messages sent

and received remained relatively constant. This juxtaposition

of rising latency and stagnant message throughput strongly

suggests the emergence of substantial queuing delays within

the Firecracker environment.

Firecrackervirtualization introducessubstantial latencyover-

head (350-600% increase) and limits message throughput

scalability beyond 10 VMs, revealing significant challenges

in optimizing network performance for serverless environ-

ments.

1 25 50 75 10
0

12
5

VM Count

102

103

p9
9

La
te

nc
y

(μ
se

c)

(a) Latencies (𝜇sec) per VM

1 25 50 75 10
0

12
5

VM Count

102

103

M
es

sa
ge

s

VM - VM (1kb)
VM - VM (4kb)
BM - BM (1kb)
BM - BM (4kb)
VM - BM (1kb)
VM - BM (4kb)

(b) Total Messages received

Figure 4: Comparing the latency andmessages received
with varyingmessage size

Figure 4 illustrates the impact of virtualization on network

performance across varying Ethernet frame sizes. Our anal-

ysis reveals a contrast between bare-metal and virtualized

configurations in their handling of increased message sizes

that necessitate additional Ethernet frames. In the bare-metal

configuration, we observe negligible variations in latency and

message throughput when the message size is marginally

increased to require an additional Ethernet frame. This con-

sistency underscores the efficiency of native network pro-

cessing in non-virtualized environments. Conversely, virtual

machine (VM) configurations exhibit a pronounced difference

in both latency and message throughput under similar con-

ditions. This disparity is clearly demonstrated by the (blue,

orange) and (green, red) line pairs in Figures 4a and 4b, respec-

tively.Themarked increase in latencyanddecrease inmessage

throughput for VMs when processing larger messages points

to a significant overhead associated with virtualized network

processing. We attribute this additional overhead in VM en-

vironments primarily to the TUN/TAPmechanism employed

for network virtualization and the lack of optimizations like

Generic Receive Offload (GRO) and TCP Segmentation Of-

fload (TSO).

VM configurations show significant performance degrada-

tion when processing messages requiring additional Ether-

net frames, unlike bare-metal setups, highlighting the over-

head of processing packets in virtualized environments.

2.3 Possible Alternatives
In the previous section, we identified and characterized the

inefficiencies present within the networking stack of Fire-

cracker. Our analysis revealed that these inefficiencies have

a detrimental impact on both the throughput and latency of

even a single VM. Furthermore, we observed that the perfor-

mance degradation compounds as the number of deployed

VMs increases. The overhead introduced by the suboptimal

network stack has significant implications for the overall

performance and scalability of the serverless computing en-

vironment built upon Firecracker. We now explain how other

existing approaches used in different settings are also insuf-

ficient, and a clean slate redesign is necessary.

2.3.1 Single Root IO Virtualization. Single Root IO Virtu-

alization (SR-IOV)[3] is a technology that enables multiple

virtual instances of the same physical networking devicewith

separate resources. These virtual functions(VFs) can be provi-

sioned separately. Each VF can be seen as an additional device

and is commonlyused in conjunctionwith anSR-IOV-enabled

hypervisor toprovidevirtualmachinesdirecthardwareaccess

to network resources hence offering native performance.

Rethinking the Networking Stack for
Serverless Environments: A Sidecar Approach SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Figure5: SR-IOVachievesnearbare-metalperformance,
in contrast to traditional network virtualization (NAT).

Evaluation. Figure 5 illustrates that SR-IOV approaches

bare metal performance, in contrast to the default setup in

virtual machines that use a virtual network switch operating

in Network Address Translation(NAT) mode[8]. NAT is the

generic networking solution for VMs that, similar to Fire-

cracker’s TUN/TAP approach, involves both the guest and

the host kernel’s networking stack. The experiment runs on

two nodes, each with a 16-core Intel Xeon Silver 4314 at 2.40

GHz, 128 GB RAM, and a Dual-port Mellanox ConnectX-6 LX

25Gb Ethernet adapter. One node operated as the sockperf[5]

server, and the other as a sockperf client, sending 64-byte

messages at peak throughput using TCP.

SR-IOV - Serverless Incompatibility. Based on the insights
from the experiment, the idea of implementing SR-IOV sup-

port for microVMs emerges. While initially promising, SR-

IOV faces scalability issues that are not well-suited to the

serverless paradigm. Cloud providers aim to maximize the

number of functions on a single host[32], necessitating a

proportional number of virtual functions. For example, Al-

ibaba hosts over 2500 serverless functions, i.e., microVMs, per

machine[25]. However, even the most advanced NICs cur-

rently support only up to 127 virtual functions per port [4].

Freeflow[19] and Falcon[23] identify the insufficient num-

ber of virtual functions as a primary limitation to deploy

them at large scale for containerized systems. HD-IOV[42]

also pointed out that SR-IOV falls short due to limited man-

agement capabilities. For example, the attached VMmust be

destroyed to reuse a VF in another VM instance, making it

impossible to cache the instance – a common solution to mit-

igate the cold start problem. Additionally, the allocation and

deallocation of Virtual Functions (VFs) to microVMs could

conflict with the Service Level Agreement (SLA) guarantees

of serverless workloads, as they necessitate configuration

changes that typically require microVM reboots.

2.3.2 Other Networking Solutions. Currently, organizations
solve the network bottleneck issues by using tools such as

Consul, where a few TUN/TAP devices are created and re-

used for the VMs. However, these solutions do not target

the fundamental problem of the overheads introduced by

the TUN/TAP device. Some solutions are targeted towards

OpenFaas[36, 41], a higher-level framework for deploying

functions in Kubernetes using containers. Nightcore [13],

a state-of-the-art serverless platform designed for micro-

second scale applications, utilizes a shared memory model

for fast intra-server communication. It makes use of a non-

VM based execution model, similar toWASM-based solutions

such as Faasm [33]. These solutions are targeted for container

or language-based runtimes and make assumptions, such as

having direct access to the host interface, that make them

unusable for VM-based deployments.

While existing solutions provide stopgap measures to miti-

gate someof thedrawbacksof currentnetworkingapproaches

in serverless environments, there is a pressing need for a fun-

damental reimagining of the network stack. A ground-up

redesign has the potential to yield significant improvements

across multiple dimensions of serverless performance. By

developing a more efficient and tailored networking stack,

we can substantially reduce overall request latency, increase

throughput, and enable direct function-to-function communi-

cation. This holistic approach to network optimization could

dramatically enhance the capabilities of serverless platforms,

enabling more complex workflows and improving resource

utilization. Such advancements would not only address cur-

rent limitations but also pave the way for novel serverless

applications that were previously constrained by networking

inefficiencies.

3 Proposed Solution
The increasing popularity of serverless computing and the

limitations of current networking solutions in this domain

necessitate a rethinking of the network stack for serverless

environments. To address these challenges and unlock the full

potential of serverless platforms, we consider the following

key requirements for a networking stack:

Low overhead and high performance. The networking
stack should aim to minimize latency and maximize through-

put, addressing the performance limitations observed with

current solutions like TUN/TAP devices. It should strive to

approach bare-metal performance levels while operating in

a virtualized environment.

Scalability for high-density deployments. The design
should support efficient operation with a large number of

concurrent functions/microVMs on a single host. It needs

to overcome the scalability issues seen with approaches like

SR-IOV, which are limited in the number of virtual functions

they can support.

Fast startup and teardown. Given the short-lived nature
of serverless functions, thenetwork stack should beoptimized

for rapid initialization and cleanup. It should not introduce

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Vishwanath Seshagiri, Abhinav Gupta, Vahab Jabrayilov, AvaniWildani, and Kostis Kaffes

significant overhead to function cold start times or require

operations that conflict with serverless SLAs.

Support for direct function-to-function communica-
tion. The design should facilitate efficient communication

between functions in a serverless DAG without relying on

intermediary queues or excessive network hops. This would

help reduce latency in multi-function applications and sup-

port more complex serverless workflows.

Strong security and isolation. The networking stack

mustmaintain thehigh levelof securityand isolationprovided

by current serverless platforms. It should prevent unautho-

rized access between functions and ensure that the improved

performance and communication capabilities do not com-

promise the security guarantees expected in multi-tenant

serverless environments

3.1 System
To address the challenges outlined in Section 2, we propose

a sidecar networking stack for serverless platforms, as illus-

trated in Figure 6. This approach builds upon and extends

concepts introduced in recent literature [18, 29, 30, 34], offer-

ing a more comprehensive and adaptable solution. The pro-

posed sidecar model provides greater flexibility to platform

providers, enabling the integration of advanced networking

paradigms such as user-space TCP or DPDK-based kernel

bypass transport layers. These solutions aim to significantly

reduce latency and increase throughput, thus addressing the

key performance bottlenecks identified in Section 2.2. Our

design establishes a uniform interface betweenmicroVMsand

the sidecar, ensuring consistency and interoperability regard-

less of the sidecar’s implementation logic. This abstraction

layer decouples the networking logic from function invo-

cation and execution, allowing for modular upgrades and

optimizations without disrupting the core infrastructure.

To implement this vision, wewill develop a virtual network

device for microVMs, leveraging sharedmemory communica-

tion for ultra-low latency interactions. The sidecar network

stack handles inbound and outbound connections, zero-copy

processingof packets, and routing requests to the correct func-

tion. For functions running on the same machine, we employ

a shared memory paradigm to locally forward packets to the

target VM, further optimizing performance. This centralized

approach not only simplifies the overall network architec-

ture but also opens up new possibilities for inter-function

communication, a critical aspect for implementing serverless

Directed Acyclic Graphs (DAGs). Moreover, it enables opera-

tors to implement advanced function placement, routing, and

network resource management strategies.

Our design prioritizes low overhead and high performance,

aiming to minimize latency and maximize throughput while

Customer Code

Linux Kernel

Firecracker Sidecar
shared memory

Host Userspace

Figure 6: Sidecar Network Functionality in User Space
Interfacing withMicroVMs via SharedMemory.

approaching bare-metal performance levels in a virtualized

environment. It addresses thescalabilitychallengesassociated

with high-density deployments, supporting efficient opera-

tion with a large number of concurrent functions/microVMs

on a single host. This overcomes the limitations seen with ap-

proaches like SR-IOV,which are constrained in the number of

virtual functions theycansupport.Recognizing theephemeral

nature of serverless functions, our network stack will be op-

timized for rapid initialization and cleanup, minimizing the

impact on function cold start times and avoiding operations

that could conflict with serverless Service Level Agreements

(SLAs). Crucially, our approach maintains the high level of se-

curity and isolation provided by current serverless platforms,

preventing unauthorized access between functions and ensur-

ing that the improved performance and communication capa-

bilities do not compromise the security guarantees expected

inmulti-tenant serverless environments. This comprehensive

design addresses the key challenges in serverless networking

while opening new avenues for performance optimization

and application complexity in serverless computing.

4 Research Directions
4.1 Security and Isolation
Serverless platforms need to guarantee isolation between

multiple tenant VMs, which also extends to the networking

stack. Since the VMs would be sharing a networking stack,

we must ensure isolation for individual tenants and alleviate

performance interference. This is critical not only for security

but also for maintaining consistent performance across differ-

ent workloads. One of the ways we could potentially achieve

isolation is to have a separate set of threads per VM, similar

to the approach used in Snap[29]. However, this would re-

quire specialized scheduling policies to manage the increased

number of threads efficiently. The challenge lies in balancing

the granularity of isolation with the overhead of managing

numerous threads. Furthermore, we need to consider the

implications of shared network resources, such as network in-

terface cards (NICs) and their queue. Since there is no isolation

guarantee provided by these commodity NICs, they’re prone

to side-channel attacks, leading to data leaks [44]. Wemust

Rethinking the Networking Stack for
Serverless Environments: A Sidecar Approach SoCC ’24, November 20–22, 2024, Redmond, WA, USA

consider the trade-offs between isolation and performance

whenmaking these decisions.While stronger isolation gener-

ally improves security, itmay introduceadditional latencyand

reduce overall system throughput. Thus, adaptive isolation

techniques that can dynamically adjust the level of isolation

based on workload characteristics and security requirements

could provide a flexible solution to this challenge.

4.2 Zero-copy
In the current network stack, the use of TUN/TAP devices

results in multiple copies being made as data travels from the

Network Interface Card (NIC) to the guest VM. This process

introduces unnecessary overhead, impacting both latency

and CPU utilization. Ideally, in our sidecar networking stack,

we aim to achieve zero-copy data transfer all the way from

the NIC to the guest application inside the VM. This optimiza-

tion would significantly reduce memory bandwidth usage

and CPU overhead, leading to improved performance and ef-

ficiency. However, implementing zero-copy in a sidecar archi-

tecture is non-trivial. The primary challenge stems from the

fact that the sidecar does not know the target VM before pars-

ing the packet, as it receives packets into a generic message

buffer pool shared between multiple VMs. This shared buffer

approach, while flexible, complicates the direct mapping of

packet data toVM-specificmemory spaces.One promising ap-

proach is to dynamically change the page table mappings for

packet data[17, 24, 39]. This method involves initially placing

packets in a shared buffer pool, and then remapping the phys-

ical pages to appropriate virtual pages in target VM’s address

space once the destination is determined. This eliminates the

need for copying data, however requires efficient page table

manipulation to avoid performance penalties. We could also

implement a two-stage buffer systemwhere packets are ini-

tially received into a shared, high-performance buffer. Once

the target VM is identified, we use a zero-copy mechanism

like vhost-user to transfer the data directly into the VM’s

memory[38]. This approach maintains flexibility while min-

imizing data movement. Each of these solutions come with

their own set of tradeoffs in terms of performance, complexity

and hardware requirements. The optimal solution may in-

volve a combination of these techniques, dynamically applied

based on workload characteristics and system conditions.

4.3 Scalability
The sidecar networking stackneeds to support a large number

of VMs on the same machine, which introduces significant

challenges in terms of scalability and efficiency. One of the

primary concerns is the potential overhead introduced by

VMspolling the network stack to receive packets. This polling

mechanism, if notoptimized, can lead toexcessiveCPUutiliza-

tionand increased latency.Moreover,maintaining state fornu-

merous connections across multiple VMs can result in cache

unfriendliness, further impacting performance. To address

these challenges, we need to perform sophisticated connec-

tion pooling that leverages a multiplexed notification system

alongwithdirect, efficient data transfer channels.A sharedno-

tification socket, that is multiplexed across various idle VMs,

can be used for notifying the VMs about incoming packets.

Thismultiplexing can be achieved byusing techniques similar

toio_uring inLinux.Uponreceivinganotification, insteadof
establishing a new connection, we canmake use of a dynamic

connection pool. Pool contains a pre-established number of

connections that is assigned to VMs, based on need. The pool

size can be adjusted based on the current load and system

resources. To maximize the efficiency of these connections,

theywill not immediately be torn down after use, instead they

will be returned to the pool with a time-to-live (TTL) value,

thus reducing the overhead of frequent connection establish-

ment and teardown. This could be combined with a priority

based-assignment mechanism, where the latency-sensitive

VMs get higher priority based on SLA agreements. To address

cache unfriendliness, we can optimize the state management

by using compact data structures and cache-conscious algo-

rithms. This includes techniques like cache line alignment

and data structure partitioning to improve locality.

This approachwould require the networking stack tomake

dynamic, intelligent decisions about resource utilization. It

must balance the trade-offs between maintaining a large con-

nection pool (consumes resources; decreases latency) and fre-

quent connection setup/teardown (saves resources; increases

latency). By designing and employing predictive algorithms,

the system can perform optimal decisions during run-time.

4.4 Coordination with Function Scheduler
The networking stack in a serverless environment needs to

coordinate closely with the function invocation scheduler for

effectively managing data transfers to and from functions.

This coordination is crucial for optimizing resource utiliza-

tion, minimizing latency, and ensuring efficient communi-

cation between functions. There are several approaches to

achieve this coordination, each with its own set of trade-offs

and considerations. One approach is for the networking stack

to synchronously communicate with the scheduler, which

maintains knowledge of all function invocation locations[36].

This method ensures up-to-date information but may intro-

duce latency in packet routing decisions. Alternatively, the

networking stack can function like a Software-Defined Net-

working (SDN) router, receiving periodic updates from the

scheduler, similar to the approach used in DirectFaaS[41].

This method reduces communication overhead but may lead

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Vishwanath Seshagiri, Abhinav Gupta, Vahab Jabrayilov, AvaniWildani, and Kostis Kaffes

to temporary inconsistencies. A more complicated approach

involves a bi-directional information sharing between the

networking stack and function scheduler. The scheduler can

use the knowledge from networking stack’s open connection

pools, for making smarter scheduling decisions, and load bal-

ancing. The scheduler can alsomake use of the network topol-

ogy information to co-locate the functions that frequently

communicate with each other on the same host to minimize

data network overhead for function-to-function communi-

cation. Offloading the control plane to a SmartSwitch with

P4 programming capabilities can provide a global view of

the system, monitor all scheduling assignments, and dynam-

ically re-route packets. This approach can potentially reduce

the coordination burden on both the network stack and the

scheduler. By carefully designing the coordination between

the network stack and function scheduler, we can create a

more efficient, responsive, and scalable serverless platform

that can adapt to diverse and dynamic workloads.

5 Conclusion
As users increasingly deploy complex,multi-function applica-

tions, the need for efficient inter-function communication has

become paramount. Our research addresses this gap by focus-

ing on the design of a networking stack specifically tailored

for serverless systems. Through extensive benchmarking,

we have demonstrated the limitations of current network-

ing stacks, which often underutilize available bandwidth and

introduce high latency. These issues, combined with scala-

bility challenges in potential alternate solutions, make them

inadequate for the demands of modern serverless applica-

tions. To address these shortcomings, we have proposed a

sidecar-based userspace networking stack that balances the

key requirements of a serverless environment: strong isola-

tion, multi-VM scalability, low overhead, fast startup, and

efficient function-to-function communication. Our design

aims to overcome the bandwidth underutilization and latency

issues observed in current systems, while also addressing

scalability concerns. Key challenges in implementing this

design include achieving zero-copy data transfer, ensuring

security and isolation in a multi-tenant environment, and

coordinating effectively with the function scheduler to opti-

mize resource utilization andminimize latency. By addressing

these challenges, we can significantly reduce packet process-

ing overhead and improve overall system throughput. This

approach has the potential to enhance network performance

while making more efficient use of available CPU, memory

and network resources in serverless environments while also

paving way for future use cases.

Acknowledgments
We’d like to thank our shepherd, George Neville-Neill, anony-

mous reviewers of SoCC’24, SESAME’24 for their invaluable

feedback and conversations that have greatly improved this

work. We thank Amanda Raybuck, Deepti Raghavan and

Guanzhou Hu for reading early versions of the draft and of-

fering feedback. We thank Cloudlab[12] for hardware and

technical support.

References
[1] [n. d.]. Adding vhost-net support to firecracker. https://github.

com/firecracker-microvm/firecracker/issues/3707#issuecomment-

1893454882

[2] [n. d.]. Azure Web PubSub trigger and bindings for Azure

Functions. https://learn.microsoft.com/en-us/azure/azure-web-

pubsub/reference-functions-bindings?tabs=csharp

[3] [n. d.]. Introduction to Single Root I/O Virtualization (SR-IOV).

https://learn.microsoft.com/en-us/windows-hardware/drivers/

network/single-root-i-o-virtualization--sr-iov-

[4] [n. d.]. NVIDIA Mellanox Virtual Functions. https://docs.nvidia.

com/networking/display/mlnxofedv590560125/single+root+io+

virtualization+(sr-iov)

[5] [n. d.]. sockperf: A Network Benchmarking Tool. https:

//github.com/Mellanox/sockperf

[6] [n. d.]. Virtual networking 101: bridging the gap to understandingTAP.

https://blog.cloudflare.com/virtual-networking-101-understanding-

tap

[7] [n. d.]. writev system call in firecracker. https:

//github.com/firecracker-microvm/firecracker/blob/

b56d201186a7928e0e303c66fc475a89520d6d97/resources/seccomp/

x86_64-unknown-linux-musl.json#L33

[8] Updated 2024. Virtual Networking. https://wiki.libvirt.org/

VirtualNetworking.html

[9] Daniel Barcelona-Pons, Pierre Sutra, Marc Sánchez-Artigas, Gerard

París, and Pedro García-López. 2022. Stateful Serverless Computing

with Crucial. ACM Trans. Softw. Eng. Methodol. 31, 3, Article 39 (mar

2022), 38 pages. https://doi.org/10.1145/3490386

[10] André Bauer, Haochen Pan, Ryan Chard, Yadu Babuji, Josh Bryan,

Devesh Tiwari, Ian Foster, and Kyle Chard. 2024. The globus compute

dataset: An open function-as-a-service dataset from the edge to the

cloud. Future Generation Computer Systems 153 (2024), 558–574.

https://doi.org/10.1016/j.future.2023.12.007

[11] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten

Hoefler. 2023. FMI: Fast and Cheap Message Passing for Server-

less Functions. In Proceedings of the 37th ACM International

Conference on Supercomputing (Orlando, FL, USA) (ICS ’23). Asso-

ciation for Computing Machinery, New York, NY, USA, 373–385.

https://doi.org/10.1145/3577193.3593718

[12] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David

Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn

Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel

Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design

and Operation of CloudLab. In 2019 USENIX Annual Technical

Conference (USENIXATC 19). USENIXAssociation, Renton,WA, 1–14.

https://www.usenix.org/conference/atc19/presentation/duplyakin

[13] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and

scalable serverless computing for latency-sensitive, interactive

microservices. In Proceedings of the 26th ACM International

https://github.com/firecracker-microvm/firecracker/issues/3707#issuecomment-1893454882
https://github.com/firecracker-microvm/firecracker/issues/3707#issuecomment-1893454882
https://github.com/firecracker-microvm/firecracker/issues/3707#issuecomment-1893454882
https://learn.microsoft.com/en-us/azure/azure-web-pubsub/reference-functions-bindings?tabs=csharp
https://learn.microsoft.com/en-us/azure/azure-web-pubsub/reference-functions-bindings?tabs=csharp
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/single-root-i-o-virtualization--sr-iov-
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/single-root-i-o-virtualization--sr-iov-
https://docs.nvidia.com/networking/display/mlnxofedv590560125/single+root+io+virtualization+(sr-iov)
https://docs.nvidia.com/networking/display/mlnxofedv590560125/single+root+io+virtualization+(sr-iov)
https://docs.nvidia.com/networking/display/mlnxofedv590560125/single+root+io+virtualization+(sr-iov)
https://github.com/Mellanox/sockperf
https://github.com/Mellanox/sockperf
https://blog.cloudflare.com/virtual-networking-101-understanding-tap
https://blog.cloudflare.com/virtual-networking-101-understanding-tap
https://github.com/firecracker-microvm/firecracker/blob/b56d201186a7928e0e303c66fc475a89520d6d97/resources/seccomp/x86_64-unknown-linux-musl.json#L33
https://github.com/firecracker-microvm/firecracker/blob/b56d201186a7928e0e303c66fc475a89520d6d97/resources/seccomp/x86_64-unknown-linux-musl.json#L33
https://github.com/firecracker-microvm/firecracker/blob/b56d201186a7928e0e303c66fc475a89520d6d97/resources/seccomp/x86_64-unknown-linux-musl.json#L33
https://github.com/firecracker-microvm/firecracker/blob/b56d201186a7928e0e303c66fc475a89520d6d97/resources/seccomp/x86_64-unknown-linux-musl.json#L33
https://wiki.libvirt.org/VirtualNetworking.html
https://wiki.libvirt.org/VirtualNetworking.html
https://doi.org/10.1145/3490386
https://doi.org/10.1016/j.future.2023.12.007
https://doi.org/10.1145/3577193.3593718
https://www.usenix.org/conference/atc19/presentation/duplyakin

Rethinking the Networking Stack for
Serverless Environments: A Sidecar Approach SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Conference on Architectural Support for Programming Languages

and Operating Systems (Virtual, USA) (ASPLOS ’21). Associa-

tion for Computing Machinery, New York, NY, USA, 152–166.

https://doi.org/10.1145/3445814.3446701

[14] Eric Jonas, Qifan Pu, ShivaramVenkataraman, Ion Stoica, and Benjamin

Recht. 2017. Occupy the cloud: distributed computing for the 99%.

In Proceedings of the 2017 Symposium on Cloud Computing (Santa

Clara, California) (SoCC ’17). Association for Computing Machinery,

New York, NY, USA, 445–451. https://doi.org/10.1145/3127479.3128601

[15] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.

Centralized Core-granular Scheduling for Serverless Functions. In

Proceedings of the ACM Symposium on Cloud Computing (Santa

Cruz, CA, USA) (SoCC ’19). Association for Computing Machinery,

New York, NY, USA, 158–164. https://doi.org/10.1145/3357223.3362709

[16] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2022.

Hermod: principled and practical scheduling for serverless functions.

In Proceedings of the 13th SymposiumonCloudComputing (San Fran-

cisco, California) (SoCC ’22). Association for Computing Machinery,

New York, NY, USA, 289–305. https://doi.org/10.1145/3542929.3563468

[17] Dong Hyun Kang, Gihwan Oh, Dongki Kim, In Hwan Doh, Changwoo

Min, Sang-Won Lee, and Young Ik Eom. 2018. When Address

Remapping Techniques Meet Consistency Guarantee Mecha-

nisms. In 10th USENIX Workshop on Hot Topics in Storage and

File Systems (HotStorage 18). USENIX Association, Boston, MA.

https://www.usenix.org/conference/hotstorage18/presentation/kang

[18] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,

Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Ac-

celeration as an OS Service. In Proceedings of the Fourteenth EuroSys

Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for

Computing Machinery, New York, NY, USA, Article 24, 16 pages.

https://doi.org/10.1145/3302424.3303985

[19] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo

Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong Guo, Vyas

Sekar, and Srinivasan Seshan. 2019. FreeFlow: Software-

based Virtual RDMA Networking for Containerized Clouds. In

16th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 19). USENIX Association, Boston, MA, 113–126.

https://www.usenix.org/conference/nsdi19/presentation/kim

[20] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi,

Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic

Ephemeral Storage for Serverless Analytics. In 13th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI 18). USENIX Association, Carlsbad, CA, 427–444.

https://www.usenix.org/conference/osdi18/presentation/klimovic

[21] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava

Basu. 2021. Faastlane: Accelerating Function-as-a-Service

Workflows. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21). USENIX Association, 805–820. https:

//www.usenix.org/conference/atc21/presentation/kotni

[22] PeterKraft,QianLi, KostisKaffes,Athinagoras Skiadopoulos,Deeptaan-

shu Kumar, Danny Cho, Jason Li, Robert Redmond, NathanWeckwerth,

Brian Xia, Peter Bailis, Michael Cafarella, Goetz Graefe, Jeremy Kepner,

Christos Kozyrakis, Michael Stonebraker, Lalith Suresh, Xiangyao Yu,

and Matei Zaharia. 2023. Apiary: A DBMS-Integrated Transactional

Function-as-a-Service Framework. arXiv:2208.13068 [cs.DB]

https://arxiv.org/abs/2208.13068

[23] Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao. 2021.

Parallelizing packet processing in container overlay networks. In

Proceedings of the Sixteenth European Conference on Computer

Systems (Online Event, United Kingdom) (EuroSys ’21). Associ-

ation for Computing Machinery, New York, NY, USA, 261–276.

https://doi.org/10.1145/3447786.3456241

[24] Baptiste Lepers and Willy Zwaenepoel. 2023. Johnny Cache: the

End of DRAM Cache Conflicts (in Tiered Main Memory Systems).

In 17th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 23). USENIX Association, Boston, MA, 519–534.

https://www.usenix.org/conference/osdi23/presentation/lepers

[25] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian,

Yi Tao, Bin Zha, Qiang Wang, Weidong Han, and Minyi Guo.

2022. RunD: A Lightweight Secure Container Runtime for High-

density Deployment and High-concurrency Startup in Server-

less Computing. In 2022 USENIX Annual Technical Conference

(USENIX ATC 22). USENIX Association, Carlsbad, CA, 53–68.

https://www.usenix.org/conference/atc22/presentation/li-zijun-rund

[26] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu,

Deze Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and

Minyi Guo. 2022. Help Rather Than Recycle: Alleviating Cold

Startup in Serverless Computing Through Inter-Function Con-

tainer Sharing. In 2022 USENIX Annual Technical Conference

(USENIX ATC 22). USENIX Association, Carlsbad, CA, 69–84.

https://www.usenix.org/conference/atc22/presentation/li-zijun-help

[27] Qingyuan Liu, Dong Du, Yubin Xia, Ping Zhang, and Haibo Chen.

2023. The Gap Between Serverless Research and Real-world

Systems. In Proceedings of the 2023 ACM Symposium on Cloud

Computing (<conf-loc>, <city>Santa Cruz</city>, <state>CA</state>,

<country>USA</country>, </conf-loc>) (SoCC ’23). Associa-

tion for Computing Machinery, New York, NY, USA, 475–485.

https://doi.org/10.1145/3620678.3624785

[28] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana

Klimovic, Somali Chaterji, and Saurabh Bagchi. 2021. SONIC:

Application-aware Data Passing for Chained Serverless Ap-

plications. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21). USENIX Association, 285–301. https:

//www.usenix.org/conference/atc21/presentation/mahgoub

[29] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,

Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,

William C Evans, Steve Gribble, et al. 2019. Snap: a microkernel

approach to host networking. In Symposium on Operating Systems

Principles (SOSP). ACM.

[30] Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su, Yongqiang Xiong, Tao

Wang, Dongsu Han, and Keith Winstein. 2020. NetKernel: Making

Network Stack Part of the Virtualized Infrastructure. In 2020 USENIX

Annual Technical Conference (USENIX ATC 20). USENIX Association,

143–157. https://www.usenix.org/conference/atc20/presentation/niu

[31] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang,

Abhigna Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang,

Wyatt Cook, Andrii Golovei, Pradeep Venkat, Andrew Mcfague,

Dimitrios Skarlatos, Vipul Patel, Ravinder Thind, Ernesto Gonzalez,

Yun Jin, and Chunqiang Tang. 2023. XFaaS: Hyperscale and Low Cost

Serverless Functions at Meta. In Proceedings of the 29th Symposium

on Operating Systems Principles (Koblenz, Germany) (SOSP ’23).

Association for Computing Machinery, New York, NY, USA, 231–246.

https://doi.org/10.1145/3600006.3613155

[32] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness,

Mark Russinovich, and Ricardo Bianchini. 2020. Serverless in the

Wild: Characterizing and Optimizing the Serverless Workload

at a Large Cloud Provider. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20). USENIX Association, 205–218.

https://www.usenix.org/conference/atc20/presentation/shahrad

[33] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation

for Efficient Stateful Serverless Computing. In 2020 USENIX Annual

TechnicalConference (USENIXATC20).USENIXAssociation, 419–433.

https://www.usenix.org/conference/atc20/presentation/shillaker

https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1145/3542929.3563468
https://www.usenix.org/conference/hotstorage18/presentation/kang
https://doi.org/10.1145/3302424.3303985
https://www.usenix.org/conference/nsdi19/presentation/kim
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
https://arxiv.org/abs/2208.13068
https://arxiv.org/abs/2208.13068
https://doi.org/10.1145/3447786.3456241
https://www.usenix.org/conference/osdi23/presentation/lepers
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://doi.org/10.1145/3620678.3624785
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc20/presentation/niu
https://doi.org/10.1145/3600006.3613155
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shillaker

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Vishwanath Seshagiri, Abhinav Gupta, Vahab Jabrayilov, AvaniWildani, and Kostis Kaffes

[34] Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

2023. Virtuoso: High Resource Utilization and 𝜇s-scale Perfor-

mance Isolation in a Shared Virtual Machine TCP Network Stack.

arXiv:2309.14016 [cs.NI]

[35] The Linux Kernel Development Team. Updated 2023.

TUN/TAP: Universal TUN/TAP Device Driver. https://docs.kernel.

org/networking/tuntap.html

[36] Dmitrii Ustiugov, Shyam Jesalpura, Mert Bora Alper, Michal Baczun,

Rustem Feyzkhanov, Edouard Bugnion, Boris Grot, and Marios

Kogias. 2023. Expedited Data Transfers for Serverless Clouds.

arXiv:2309.14821 [cs.DC]

[37] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,

and Boris Grot. 2021. Benchmarking, analysis, and optimization

of serverless function snapshots. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (Virtual, USA) (ASPLOS ’21).

Association for Computing Machinery, New York, NY, USA, 559–572.

https://doi.org/10.1145/3445814.3446714

[38] Dongyang Wang and Bei Hua. 2019. ZCopy-Vhost: Replacing Data

Copy With Page Remapping in Virtual Packet I/O. IEEE Access 7

(2019), 51047–51057. https://doi.org/10.1109/ACCESS.2019.2911905

[39] Chao Yang, Yunfei Guo, and Hongchao Hu. 2019. MemWander:

Memory Dynamic Remapping via Hypervisor Against Cache-

Based Side-Channel Attacks. IEEE Access 7 (2019), 2179–2199.

https://doi.org/10.1109/ACCESS.2018.2886372

[40] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen.

2023. Following the Data, Not the Function: Rethinking Func-

tion Orchestration in Serverless Computing. In 20th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 23). USENIX Association, Boston, MA, 1489–1504.

https://www.usenix.org/conference/nsdi23/presentation/yu

[41] Qingyang Zeng, Kaiyu Hou, Xue Leng, and Yan Chen. 2024.

DirectFaaS: A Clean-Slate Network Architecture for Efficient

Serverless Chain Communications. In Proceedings of the ACM on

Web Conference 2024 (Singapore, Singapore) (WWW ’24). Associ-

ation for Computing Machinery, New York, NY, USA, 2759–2767.

https://doi.org/10.1145/3589334.3645333

[42] Zongpu Zhang, Jiangtao Chen, Banghao Ying, Yahui Cao, Lingyu

Liu, Jian Li, Xin Zeng, Junyuan Wang, Weigang Li, and Haibing

Guan. 2024. HD-IOV: SW-HW Co-designed I/O Virtualization with

Scalability and Flexibility for Hyper-Density Cloud. In Proceedings of

the Nineteenth European Conference on Computer Systems (Athens,

Greece) (EuroSys ’24). Association for Computing Machinery, New

York, NY, USA, 834–850. https://doi.org/10.1145/3627703.3629557

[43] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian

Zhang, and Zhiqiang Lin. 2023. Reusable Enclaves for Confiden-

tial Serverless Computing. In 32nd USENIX Security Symposium

(USENIX Security 23). USENIX Association, Anaheim, CA, 4015–4032.

https://www.usenix.org/conference/usenixsecurity23/presentation/

zhao-shixuan

[44] Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu. 2024.

SmartNIC Security Isolation in the Cloudwith S-NIC. In Proceedings of

the Nineteenth European Conference on Computer Systems (Athens,

Greece) (EuroSys ’24). Association for Computing Machinery, New

York, NY, USA, 851–869. https://doi.org/10.1145/3627703.3650071

https://arxiv.org/abs/2309.14016
https://docs.kernel.org/networking/tuntap.html
https://docs.kernel.org/networking/tuntap.html
https://arxiv.org/abs/2309.14821
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1109/ACCESS.2019.2911905
https://doi.org/10.1109/ACCESS.2018.2886372
https://www.usenix.org/conference/nsdi23/presentation/yu
https://doi.org/10.1145/3589334.3645333
https://doi.org/10.1145/3627703.3629557
https://www.usenix.org/conference/usenixsecurity23/presentation/zhao-shixuan
https://www.usenix.org/conference/usenixsecurity23/presentation/zhao-shixuan
https://doi.org/10.1145/3627703.3650071

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Need for Fast Networking
	2.2 Firecracker Networking Stack
	2.3 Possible Alternatives

	3 Proposed Solution
	3.1 System

	4 Research Directions
	4.1 Security and Isolation
	4.2 Zero-copy
	4.3 Scalability
	4.4 Coordination with Function Scheduler

	5 Conclusion
	Acknowledgments
	References

