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Abstract
In the race to achieve better performance, artificial intelligence has become more about the end rather than the means,

which is general intelligence. This work aims to bridge the gap between the two by finding a complementary midline. The

objective of this work is to project the role of Dentate Gyrus in enhancing the performance of an autoassociative network,

paving the way to develop a biologically plausible neural network which, in the future, would help in simulating the

network present in our brain. The proposed network imbibes biological similarities with respect to connectivity, weight

updation, and activation function. Dentate Gyrus uses pre-integration lateral inhibition form of learning, and the autoas-

sociative network is implemented using Hopfield network. The performance of the autoassociative network in the presence

and absence of Dentate Gyrus is observed across multiple parameters. The results show an increase of 38% in storage

capacity and a decrease of 15% in the error tolerance capability of the network in the presence of Dentate Gyrus.
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1 Introduction

Artificial general intelligence has remained a holy grail for

AI researchers, while working of the neural network in our

brain has remained a mystery for neuroscience researchers

worldwide. With breakthroughs in the field of neuro-

science, neuroimaging, and cognitive science, a better

picture has emerged. Harnessing these findings and the

increase in computation power, this work proposes the first

step toward building a network functionally similar to the

brain in silico.

Any intelligent system, artificial or biological, requires a

knowledge base, and the purpose of building a knowledge

base is fulfilled only when it stores and retrieves data

effectively and efficiently. If we want to achieve human-

level intelligence in the future, we need to structure and

process knowledge like humans do. So, the question is

where do we start? The answer lies in the region known as

hippocampus in our brain, which plays a major role in

memory storage and retrieval. It can be considered as a

code book for the knowledge stored in our brain, and it is

also responsible for creating the code book. Hippocampus

is a part of the archicortex, the oldest region of the brain.

Being one of the earliest regions to develop, it can be said

that hippocampus is the starting point of the evolutionary

road leading to memory and intelligence as we know it

today.

The role of hippocampus in memory has been an active

area of research for a long time now. The hippocampal

region includes the Dentate Gyrus (DG), hippocampus

proper, and the subiculum (Sub). Hippocampal proper

comprises four subfields CA1, CA2, CA3 and CA4, where

CA stands for Cornu Ammonis (horn of the Egyptian god

Amun). A number of models have been developed to

represent the different functions of the hippocampus

[16, 30, 35, 40]. The hippocampal circuit along with its

adjacent regions is shown in Fig. 1. The entorhinal cortex

(EC) has multiple layers. Layers II and III are a part of the

input pathway from the higher regions of the brain. Layer

V is part of the output pathway. The numbers given in the

figure represent the number of neurons in each region of

the hippocampus as given in [31, 39]. The dashed line

represents backprojection of information into the higher
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regions of the brain after being processed by the

hippocampus.

Pattern completion and pattern separation are two

important mechanisms which enable the hippocampus in

retrieving episodic memory [27, 29]. Pattern completion

happens when the whole memory is retrieved by com-

pleting the received cues. The trigger could be anything, a

location, an object, a reward, or an experience. Pattern

completion can occur from any part of the memory, that is,

the cue could be anything related to the memory. This is

different from pattern association where retrieval happens

only in one direction when presented with a stimulus [27].

When there is some correlation between patterns, the

capacity of a network shrinks [16]. In order to overcome

this, the hippocampus performs pattern separation. It

basically makes sure that two similar events can be dif-

ferentiated during retrieval. There are different subpro-

cesses which help the hippocampus in achieving pattern

separation, and the Dentate Gyrus plays a significant role as

listed in [29].

This paper aims to develop a functionally similar model

of a subregion of the hippocampus known as Dentate

Gyrus, which performs certain basic functionalities similar

to its biological counterpart. Section 2 describes the

network components in detail, starting from how a neuron

is represented in a network to the working of an autoas-

sociative network. Section 3 presents the proposed work,

elaborating on implementation details like weight updation

rule, activation function, and the structure of the network.

Section 4 describes in brief the system setup and con-

straints placed on the proposed network. Section 5 explains

the various evaluation methods used and the results

obtained.

2 Network components and properties

A neuron can be considered as the building block of a

nervous system, and the connection between two neurons is

called a synapse [4]. Together, multiple neurons and

synapses form a network which enables humans to process

information obtained from the world around. The strength

of a synapse plays a major role in learning and memory.

The change in synaptic strength between the neurons as a

result of activation in the respective neurons is called

synaptic plasticity. This section describes the type of neural

coding used to encode information and elaborates on the

functions of Dentate Gyrus, which helps in improving the

efficiency of CA3.

2.1 Neural coding

In humans, the activity pattern in a layer of neurons, which

arise as a result of stimulation of the neurons, represents an

item [25]. The term item could refer to something complex

like an object, a location, a word, a song, or it could refer to

something more fundamental which leads up to the com-

plex item, like an edge, a musical note, an alphabet, or even

just a dot.

Complexity of the stimulus that a neuron responds to

depends upon its position in the neural pathway. For

example, in case of visual stimulus, rod and cones are the

sensory neurons which bring about phototransduction. This

signal is passed on via bipolar cells to the retinal ganglion

cell (RGC). The RGCs have a center-surround receptive

field which are of two types—on-center, off-surround and

off-center, on-surround, which are stimulated when the

respective areas are activated [11]. Basically, it responds to

a dot of light or darkness. On the other end, a neuron in the

V4 area of the visual cortex responds to color, depth, shape,

and motion information [26]. Further higher in the path-

way, V4 is strongly connected to the inferior temporal

cortex which performs the task of the object, face recog-

nition which goes on to connect to the hippocampus. All

along the pathway information is represented as a pattern

of active neurons in each layer.

Fig. 1 Medial temporal lobe with number of neurons in each of the

hippocampal regions
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When a neuron fires, it is said to generate a spike, and

when it fires repeatedly it generates a spike train. Analo-

gous to information coding in computers, a spike can be

treated as ‘1’ and silence as ‘0’. As a result, a spike train

becomes a sequence of 0s and 1s. The number of spikes

generated by a neuron per unit time is the neuron’s firing

rate.

Different coding schemes have been proposed to encode

information from the activity of neurons. In the case of

temporal coding, spike timing is considered to hold infor-

mation. In the rate coding model, the firing rate of a neuron

is said to encode information. Population coding represents

information in a distributed form. Each neuron on its own

does not contain any indispensable information, but when

combined with responses of many other neurons, that is, a

population of neurons, it holds a significant amount of

information. Basically, a set of features, which bring about

a response in their respective neuron, are used to represent

a particular item. The neighboring neurons in a population

are tuned to respond to inputs, which are very similar, but

not the same, leading to redundancy.

The problem of redundancy in population coding can be

controlled if only one neuron, of the population repre-

senting similar features, responds to a stimulus. This type

of coding is called sparse coding, since only a small subset

of all the available neurons fire at any particular time to

represent a particular item. Compared to population cod-

ing, less energy is consumed in case of sparse coding. The

sparseness is measured in terms of number of active neu-

rons in a given population of neurons. Increase in sparse-

ness of the representation leads to increase in capacity of

the network of neurons [1, 21, 22]. Higher storage capacity

and lower power consumption are desirable features for

designing a network. There is enough evidence to support

the biological significance of sparse coding in sensory

systems responsible for sight, sound, smell, and touch

[6, 10, 14, 21, 38]. Taking all these factors into consider-

ation, the network proposed in this work uses sparse coding

to encode information.

2.2 Dentate Gyrus

Dentate Gyrus is the first region in the hippocampal for-

mation. The Dentate Gyrus receives input from the ECII

region via perforant path, and it projects to the CA3 region

of the hippocampus via mossy fibers. The subprocesses

carried out by the Dentate Gyrus region are vital for CA3 to

function efficiently.

The Dentate Gyrus plays a compelling role in the for-

mation of new memories. A significant increase in the

firing of the dentate granule cells is observed in the case of

a subject being presented with a novel stimulus [19]. This

surge in firing is attributed to the rise in level of dopamine

in the hippocampus [24, 42]. The novelty detection process

though is carried out by the CA1 region, and the result is

passed on to the ventral tegmental area (VTA) which is

responsible for controlling the release of dopamine [15].

Since CA1 region is not implemented in this work, whether

the CA3 network has to perform storage or retrieval is set

manually.

The mossy fiber connection to CA3 region is sparse and

strong, and this plays a vital role in encoding new infor-

mation [34]. It has to be noted that a single mossy fiber

plays a significant role in firing a neuron, but the mossy

fiber pathway as a whole has a little say in the activation of

CA3 cells due to sparse activation in the Dentate Gyrus

[37].

Dentate Gyrus is said to perform pattern separation,

while encoding, as a result of different subprocesses

[18, 27]. The number of granule cells in the Dentate Gyrus

region is almost 16 and 6.5 times the neuron count in ECII

and CA3 region, respectively; thus, there is a significant

scale-up in the number of neurons [31, 39]. Basically, this

means that the activation pattern in ECII is projected onto

Dentate Gyrus, giving rise to a sparse activation, given the

higher count of neurons in the latter. This expansion

recoding helps in decorrelating the input patterns and

improves input variability, leading to pattern separation

[3, 27]. The expansion recoding process can be realized in

silico by using competitive learning to remap the activation

pattern in ECII onto the higher-dimensional Dentate Gyrus

layer [28].

2.3 CA3

The CA3 region of the hippocampus is composed of

pyramidal neurons. A pyramidal neuron is a multipolar

neuron, that is, it has many dendrites and one axon. The

dendrites and axon have many branches which enable the

neuron to connect to a number of neurons. As the number

of branches increases, the ability of a neuron to integrate

and distribute information increases. The CA3 pyramidal

neurons receive input from the Dentate Gyrus via the

mossy fiber pathway, from the entorhinal cortex via the

perforant path and from CA3 pyramidal neurons itself via

recurrent collaterals. The recurrent collaterals terminate at

the apical dendrites, and the mossy fibers terminate at the

basal dendrites [41]. The recurrent collaterals enable the

CA3 region to perform pattern completion, and there is no

self connection between neurons in the CA3 network. The

mossy fiber synapses are large, and also powerful since

they terminate closer to the cell body, which means they

play a relatively significant role in firing of a CA3 neuron.

Also, the firing in the Dentate Gyrus region is very sparse

and this promotes pattern separation in CA3, which is

necessary for the CA3 network to perform efficiently [34].

Neural Computing and Applications

123



The CA3–CA3 connections form an autoassociative

network, explained in Sect. 2.4, similar to a Hopfield net-

work [2, 17]. The difference is that the Hopfield network is

fully connected, whereas the CA3–CA3 network has dilu-

ted connectivity. The dilution in biological networks is due

to the biological upper limit on the number of inputs a

neuron can receive. Some modifications were made to the

Hopfield network to accommodate this difference, while

simulating the CA3–CA3 autoassociation network [30].

This dilution in connectivity leads to an increase in storage

capacity of the CA3–CA3 network.

2.4 Autoassociative memory

There are two types of association: heteroassociation,

where the input pattern retrieves the output pattern, and

also the patterns are different from each other, and au-

toassociation, where the input pattern acts as a cue to

retrieve the output pattern, and the patterns are similar [23].

As mentioned in Sect. 2.3, CA3 performs autoassociation.

When presented with a degraded or incomplete pattern, the

CA3 returns the original pattern. For example, when we see

a cat in any angle, we recognize that it is a cat, which is

autoassociation. Associating a cat with the word ‘cat’ is

called heteroassociation.

Major part of this work deals with improving the per-

formance of an autoassociation network. Figure 2 depicts

the working of an autoassociative network. Let A be a

pattern which has already been stored in the network and

{a1; a6; a8; a12; a24} be the neurons representing the sub-

patterns constituting A. The neuron ai is activated when

sum of all incoming action potentials into ai causes a drop

in the neuron’s membrane potential leading to the firing of

ai. Similarly, the output neuron A fires when all the neu-

rons representing the subpatterns of A fire. In Fig. 2, an

autoassociative network is given with 25 interconnected

neurons {a0:::::a24}. The neurons ai and aj are intercon-

nected with the condition that i 6¼ j. Given an input pattern

which is an incomplete version of pattern A, the network,

via recurrent collaterals, will complete the patterns, leading

to the original pattern A. The number of cycles required by

the biological network to complete a pattern is estimated to

be between 4 and 6 [16, 40].

Let us assume that neurons {a1; a6; a12} fire as in

Fig. 2(i). The output of the current state leads to the firing

of other neurons in the network, as a result of the action

potential added on via the recurrent collateral. This con-

tinues for a number of cycles, as mentioned above, until

eventually all neurons representing pattern A are activated.

The capacity of an autoassociative memory depends on

the number of neurons in the network, relationship between

the patterns stored, activation ratio, and dilution in con-

nectivity. While simulating an autoassociative network, the

vectors representing the patterns should be mutually

orthogonal. In such cases, N - 1 vectors can be stored,

where N is the number of neurons [8]. In high-dimensional

systems, finding a set of orthogonal vectors is a computa-

tionally expensive process. If the patterns are sparse, it is

safe to say that the vectors representing it are nearly

orthogonal, which makes more sense from a biological

perspective. In the case of biological networks, patterns

tend to overlap when there is some similarity between

stimuli.

3 Proposed work

This work does not deal with modeling the behavior of a

biological neuron. Instead, it focuses on modeling some of

the higher-level functions or behavior of a biological neural

network like, neural layers with excitatory and inhibitory

neurons, pattern completion, and pattern separation. The

Fig. 2 Pattern completion performed by an autoassociative network
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idea is that mimicking the biological process behind

learning and memory will take us a step closer to achieving

human-level intelligence. Accordingly, storage and retrie-

val process in this paper follows the working of the hip-

pocampal region.

From a computer science perspective, Fig. 3 is a neural

network with varying weight update rules and activation

functions. The proposed network neither has any mecha-

nism to backpropagate errors to previous states, nor does

have a uniform weight update rule or activation function

calculation, which is the case in most of the traditional

artificial neural networks. In this context, this work pro-

poses a heterogeneous neural network capable of per-

forming pattern storage and retrieval.

From a biological perspective, Fig. 3 represents a subset

of Fig. 1, which is an architecture of the hippocampus. The

proposed network in this context tries to find a midline

between the operations of a biological and artificial neural

network. A simulation of the hippocampus region exists, as

given in [29]. The proposed work deviates from the

existing implementation in various aspects. The major

difference is that the existing network works with rate

coding, while the proposed network works with sparse

coding mechanism. This essentially means that the existing

network is analog, and the proposed network is discrete and

binary.

This work simulates the hippocampus region, sans CA1.

The theory that Dentate Gyrus enables the CA3 network to

separate, store, and retrieve similar patterns is put to test. In

Fig. 3, the equation besides an arrow represents a weight

update rule and the equation within the box represents an

activation function. The subsequent sections describe the

methods used to realize the network.

3.1 The role of Dentate Gyrus

As mentioned in Sect. 2.2, the Dentate Gyrus region uses

expansion recoding and competitive learning techniques to

bring about pattern separation. A biologically plausible

form of competitive learning is implemented using pre-

integration lateral inhibition in the proposed network. This

method incorporates the functions performed by an inhi-

bitory interneuron in a biological neural network [32]. Pre-

integration is preferred over post-integration, because it can

represent multiple, overlapping patterns and also it adapts

to a coding scheme, local or distributed, based on the input

received [33]. Equation 1 defines the activation function of

neurons in the Dentate Gyrus layer as derived in [32].

hDGj ¼
Xm

i¼1

wEC DG
ij xi

1� amax
n

k 6¼j
k¼1

wEC DG
ik

maxml¼1 wEC DG
lk

� � yk

maxnl¼1 ylf g

( )0

@

1

A
þ

ð1Þ

The above equation accounts for the effect of inhibitory

interneurons. hDGj is the activation received by neuron j in

the Dentate Gyrus layer. Figure 4 has been included to give

a better understanding of Eq. 1. In this equation, x and

y represent the neuron in ECII and the Dentate Gyrus,

respectively. The term
Pm

i¼1w
EC DG
ij xi represents the total

input activation received by neuron j from ECII, and a
controls the magnitude of lateral inhibition applied to the

neuron.

MwEC DG
ij ¼ b

xi � xð ÞPm
k¼1 xk

yj � y
� �
Pn

k¼1 yk
ð2Þ

Calculation of synaptic weight wEC DG
ij between ECII

ið Þ and Dentate Gyrus jð Þ is given by Eq. 2. The weight

between presynaptic neuron i and postsynaptic neuron j is

given by wEC DG
ij . b is used to set the learning rate. x and y

EC II

DG
Eqn. 1

CA3
Eqn. 7 or 8

Eqn. 2

Eqn. 6

Eqn. 5 Eqn. 4

Fig. 3 Proposed network

Fig. 4 Competitive network comprising EC II and Dentate Gyrus

regions. The connections in red represent the inhibition incorporated

into the network (color figure online)
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are the mean activation values of the layer x and y,

respectively.

3.2 CA3 using Hopfield network

As mentioned in Sect. 2.3, the CA3 network is similar to an

autoassociative network. To make it similar to the actual

CA3 region in the hippocampus, some changes and addi-

tions have to be made. The CA3 network in this work is

implemented using a Hopfield network. The Hopfield net-

work operates in two different modes. The first mode is

operational when a new memory is given as an input. In

this case, additional activation is received by a CA3 neuron

from the Dentate Gyrus region along with the input from

the ECII region. This additional activation leads to modi-

fication in the weights of the recurrent connections in the

Hopfield network. In the second mode, the CA3 network is

given an incomplete or incorrect version of a pattern,

which has already been stored in the network. In this case,

there is no additional activation from the Dentate Gyrus,

but the recurrent connections drive the network to retrieve

the complete original pattern. In short, mode one performs

storage using pattern separation and mode two performs

retrieval using pattern completion. The storage capacity of

a Hopfield network is given as 0.0138N [9]. This value is

achieved when the probability of error in the input pattern

is \0:01.

In general, hippocampal models use rate coding to

represent information. In such cases, weights are updated

based on the average firing rate of a neuron [13, 30].

Hebbian learning and its variations, like covariance rule,

BCM rule, Oja’s rule to name a few, following rate coding

are used extensively to model biological neural networks.

In case of sparse coding, we assume that information is

encoded in the pattern of activation of neurons and not in

the firing rate of a neuron. The equation for weight update

while using rate coding and sparse coding varies

accordingly.

In the case of recurrent collaterals, synapses intercon-

nect neurons within the same layer. Equation 3 used in [30]

performs weight updation using Hebbian covariance rule,

where N is the number of neurons in the layer, P is the total

number of patterns learned, and wij is the synaptic weight

between neurons i and j. gli and glj represent the firing rate

of neurons i and j in pattern l. The value of a is based on

the firing rate g and defined as a ¼ gh i2/ gh i2. Since sparse

coding does not consider firing rate, the equation is mod-

ified to 4, as given in [20].

wij ¼
1

Na2

XP

l¼1

gli � að Þ glj � a
� �

ð3Þ

wRC
ij ¼ 1

N

XP

l¼1

x
l
i � að Þ x

l
j � a

� �
ð4Þ

Equations 3 and 4 look alike but differ in two aspects.

First, g represents the firing rate of a neuron, whereas x

depicts the state of a neuron given by x ¼ � 1, where þ 1

implies the neuron is active and �1 dormant. Second, the

calculation of a in Eq. 4 is different. It is the mean of the

vector xl, a ¼ E½xli �.
It is proposed that synapses between EC II and CA3 are

said to exhibit associative modification, that is, they follow

Hebbian learning [5]. The synaptic weight between the two

regions is given by Eq. 5, derived from Oja’s rule. In the

equation, MwEC CA3
ij represents the change in weight being

calculated. The term wEC CA3
ij represents the current weight

between EC II and CA3. The term yj is the state of the jth

neuron in CA3, and c is the learning rate.

MwEC CA3
ij ¼ cyj xi � yjw

EC CA3
ij

� �
ð5Þ

The mossy fiber synapses on the other hand do not show

signs of long-term potentiation (LTP) or long-term

depression (LTD) [29]. This was later proved to be false,

and it was established that the mossy fiber synapse onto

CA3 exhibited both Hebbian and non-Hebbian forms of

LTP and LTD [12, 36]. In non-Hebbian form of potentia-

tion, the synaptic strength is modified as a result of acti-

vation of presynaptic or postsynaptic neuron, but not both,

which is the case in Hebbian. Non-Hebbian potentiation is

thought to bring about Hebbian plasticity eventually. In the

proposed network, only Hebbian plasticity has been

implemented, due to the lack of clarity about the functions

of non-Hebbian plasticity.

Therefore, the weight update for the mossy fiber synapse

also follows Oja’s rule, given by Eq. 6, where MwDG CA3
ij

represents the change in weight being calculated. The term

wDG CA3
ij represents the current weight between DG and

CA3. The term yj is the state of the jth neuron in CA3, and

c is the learning rate.

MwDG CA3
ij ¼ cyj xi � yjw

DG CA3
ij

� �
ð6Þ

The following two equations calculate the activation

received by a neuron in CA3. In the equations, the terms

x, y, z represent a neuron in the ECII, DG, and CA3

regions, respectively. While encoding patterns, the total

activation received by neuron i in CA3 is given by Eq. 7.

The first part of the equation calculates the activation

received from ECII. The second part of the equation cal-

culates the activation received from Dentate Gyrus. Since

the activation via recurrent collateral is suppressed during

encoding, it is not represented in the calculation.
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hCA3i ¼
Xm

j¼1

wEC CA3
ji xj þ

Xn

k¼1

wDG CA3
ki yk: ð7Þ

During recall, the total activation received by neuron i in

CA3 is given by Eq. 8. The first part of the equation cal-

culates the activation received from ECII. The second part

of the equation calculates the activation received via the

recurrent collaterals. Since the activation via Dentate

Gyrus is suppressed during recall, it is not represented in

the calculation.

hCA3i ¼
Xm

j¼1

wEC CA3
ji xj þ

Xr

l¼1

wRC
li zl: ð8Þ

4 Simulation details

The network was implemented on a system powered by an

Intel Xeon processor, with 32 GB RAM and NVIDIA Titan

X (Maxwell architecture, 12 GB). The number of neurons

in each layer was set in proportion to the biological count

mentioned in Sect. 2.2 and scaled down. Biologically, the

number of synapses per neuron varies with neuronal den-

sity, but we did not take this into consideration and all the

layers were fully connected [7].

The network weights between two regions were initial-

ized to equal values, summing up to 1. Even after the

weights were modified by the algorithm, they were nor-

malized to sum up to 1. Table 1 gives the list of notations

used in the algorithms and their description. It is to be

noted that some changes have been made in the represen-

tation of the equations. This change is to accommodate

different equations in a single algorithm. The components

of the equation remain the same as described in the pre-

vious sections.

The description of Algorithm 1, used to store patterns, is

as follows. For each pattern pi received by ECII, the cor-

responding neurons in NECII are activated. The pattern is

then processed via two pathways, ECII-CA3 and ECII-DG-

CA3. The final activation is the sum of activations received

via the two pathways.

In the ECII–DG–CA3 pathway, the while loop continues

to execute till wEC DG reaches a stable state, that is, till it

stops changing between iterations. For each neuron j in

DG, the activation function is calculated. After calculating

the activation value for all neurons in DG, if a neuron is

activated, the weights corresponding to the activated neu-

ron are updated. If a neuron is not active, the weights

remain unchanged.

The ECII–CA3 pathway is much simpler. For each

neuron ue in ECII, the activation received via the perforant

path using Eq. 5 is calculated. Then, it is added to the

activation received via the mossy fiber, as given in Eq. 7.

Once hCA3 has been calculated for a pattern, the weights of

the network are updated as mentioned in Algorithm 1. The

algorithm, basically, stores patterns in the network by

modifying the connection weights accordingly and returns

the modified weights.

Table 1 Notations used in the

algorithm and their description
Symbol Description

P Patterns to be stored in the network

NDG Set of n neurons in DG

NECII Set of m neurons in ECII

NCA3 Set of r neurons in CA3

ud A neuron in DG

ue A neuron in ECII

uc A neuron in CA3

wEC DG Synaptic weights between ECII and DG, initialized to 1/mn

wRC Synaptic weights of recurrent collaterals, initialized to 1=r2

wDG CA3 Synaptic weights between DG and CA3, initialized to 1/nr

wEC CA3 Synaptic weights between ECII and CA3, initialized to 1/mr

hDGj Activation function of neuron j in DG

hCA3r
Activation function of neuron i in CA3

a Parameter to control inhibition

b Learning rate

c Learning rate in Oja’s rule
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During recall, given in Algorithm 2, the network weights

are set as received from Algorithm 1. A pattern p0k is given as

an input to the network by activating the corresponding

neurons in NECII. Pattern p0k is an incomplete or corrupt ver-

sion of a pattern pk 2 P. The recall algorithm is set to go on

for five cycles, an average of the number of cycles mentioned

in [16, 40]. For each neuron i in CA3, the activation received

is calculated using Eq. 8. The outcome of this algorithm is,

either, a complete and correct pk, or, an incorrect pattern.

5 Evaluation

The significance of Dentate Gyrus in improving the per-

formance of a CA3 network is established by the following

evaluation methods. The two architectures being compared

here are a stand-alone CA3 network, referred as without

DG, and a CA3 network connected to DG, referred as with

DG. The stand-alone CA3 network here is nothing but a

Hopfield network. Comparing these two architectures helps

in inferring the effect of Dentate Gyrus.

The input patterns used for evaluation were generated

randomly. The length of the input pattern corresponds to

the number of neurons in the input layer of the architecture

being used. Striving for a fair comparison between the two

architectures, the same input patterns were presented to

them both. Therefore, the number of neurons in the ECII

region and the CA3 region was set equal for evaluation

purposes.

The values for the learning parameters a and b were set

as 0.25 and 1, respectively. It was based on the values

Algorithm 2: Pattern recall
Input : pk

′- Modified version of pk
Output: NCA3 - Final activation in CA3

1 Incoming activation: NECII ← p′
k

2 while (t ≤ 5) do
3 foreach ui

c ∈ NCA3 do
4 hCA3

i =
∑m

j=1 wEC CA3
ji xj +

∑r
l=1 wRC

li zl
5 end
6 end
7 return (NCA3) ;

Algorithm 1: Pattern storage
Input : P - Set of Patterns {p1, p2 . . . pm}, NDG={u1

d, u2
d . . . un

d},
NCA3={u1

c , u2
c . . . ur

c}, NECII={u1
e, u2

e . . . um
e }, wEC DG, wRC ,

wDG CA3, wEC CA3, hDG
j , α, β, γ

Output: wEC DG, wRC , wDG CA3, wEC CA3

1 foreach pi ∈ P do
2 Incoming activation: NECII ← pi
3 while wEC DG

ij changes between iterations do
4 foreach uj

d ∈ NDG do
5 hDG

j =

∑m
i=1wEC DG

ij ui
e

(
1 − αmaxnk=1

k �=j

{
wEC DG

ik

maxml=1{wEC DG
lk }

uk
d

maxnl=1{ul
d}

})+

6 end
7 foreach uj

d ∈ NDG do
8 if uj

d = 1 then

9 Update weight using �wEC DG
ij = β

(ui
e−ue)∑m
k=1 uk

e

(
u
j
d−ud

)
∑n

k=1 uk
d

10 end
11 else
12 No weight updation
13 end
14 end
15 end
16 foreach ui

c ∈ NCA3 do
17 hCA3

i =
∑m

j=1 wEC CA3
ji uj

e +
∑n

k=1 wDG CA3
ki uk

d

18 end
19 Update weights:
20 �wRC

ij = 1
r
(ui

c − a)(uj
c − a)

21 �wEC CA3
ij = γuj

c

(
ui
e − uj

cwEC CA3
ij

)
22 �wDG CA3

ij = γuj
c

(
ui
d − yj

cwDG CA3
ij

)
23 end
24 return wEC DG, wRC , wDG CA3, wEC CA3

)
; // Modified weights
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given in [32]. The value for c was set at 0.30 after a number

of trials.

5.1 Storage capacity

Storage capacity gives the number of patterns that can be

stored in the network before it begins to malfunction, that

is, the network is no longer able to retrieve the whole

pattern, when presented with an incorrect or incomplete

pattern. In Fig. 5, x-axis represents the size of the network

in terms of the number of neurons in CA3 region. The y-

axis represents the number of patterns that can be stored in

the network before retrieval becomes faulty. The rest of the

network is scaled accordingly.

It is evident from the graph that in the presence of

Dentate Gyrus, the capacity of the network is higher. On an

average, � 0:137N and � 0:189N patterns can be stored in

a network of N neurons, in the absence and presence of

Dentate Gyrus, respectively, that is, a 38% increase in the

capacity of the network. To give an idea of what it means

in a large-scale network, a total of � 510;300 and �
361;800 patterns can be stored in a CA3 network with

1:7� 107 neurons, in the presence and absence of Dentate

Gyrus, respectively.

5.2 Pattern separation

To project the role of Dentate Gyrus in performing pattern

separation, patterns with different levels of overlap were

stored in a network of 100 neurons. The capacity of the

network was then calculated. The overlap in patterns was

calculated using Hamming distance.

As it is clear from Fig. 6, in the presence of Dentate

Gyrus, the capacity of the network to store overlapping

patterns is much higher. For example, when the average

overlap between patterns stored in the network is set at

25%, a capacity of approximately 0.15N and 0.08N is

achieved in the presence and absence of Dentate Gyrus,

respectively. It is evident from the graph that the perfor-

mance of the network degrades with an increase in overlap.

However, in the presence of DG, the performance of the

network is better.

This increase in capacity can be attributed to the fact

that during pattern separation random neurons are activated

in the CA3 region, in addition to the activation brought

about by the perforant path. These random activations help

in pulling apart similar patterns before storing them in the

network. This helps in the retrieval of memories, which are

similar, but not the same.

5.3 Fault tolerance

Fault tolerance is the ability of a network to deal with errors

in the input pattern. The original version of these input

patterns has already been stored in the network. The error

could be due to incomplete pattern presentation, or due to

change in few bits of the pattern. In this case, the ability of

the proposed network to handle errors in the input pattern,

while eventually retrieving the original pattern, is tested.

The tests were conducted by varying the number of

patterns stored in the network. For example, 19 is the

maximum number of patterns that can be stored in a net-

work of 100 neurons, in the presence of Dentate Gyrus.

The network is said to be working at 100% capacity if 19

patterns are stored, and it is at approximately 50% capacity

if 9 patterns are stored.

From Fig. 7, it can be inferred that fault tolerance

capacity of the network with Dentate Gyrus is on an

Fig. 5 Number of patterns that can be stored effectively, given the

size of a network in terms of the number of neurons in the CA3 region

Fig. 6 Variation in the number of patterns that can be stored against

the percentage of overlap between the input patterns

Fig. 7 Error tolerance capability of the network at different capacity

levels
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average 15% lower. This setback in fault tolerance can be

attributed to the increase in number of active neurons

required to represent a pattern. In the presence of Dentate

Gyrus, additional neurons are activated in the CA3 region

by the mossy fiber pathway. The sparseness of the patterns

stored in the CA3 region, or the Hopfield network to be

more specific, has reduced as a result of the additional

activation. Also, the additional activation means that the

incoming pattern is modified before storage. This does not

mean that the memory is modified, it is the representation

of the memory that is modified. This modification, while

retrieving, adds to the error in the input pattern, thereby

bringing down the overall level of error tolerance.

The above results prove that better performance can be

achieved by incorporating biologically plausible variations

in a neural network. The evidence is pretty clear that the

Dentate Gyrus region plays a major role in improving the

performance of an autoassociative network. The storage

capacity of the network has increased significantly. The

proposed network is able to store and retrieve patterns

which have some degree of overlap, which is necessary in

case of biological patterns.

The ability of the proposed network to work with

overlapping patterns comes with a trade-off. The proba-

bility of error in the network needs to be at a minimum for

the network to store more patterns. This, however, means

that the network is able to generalize highly similar pat-

terns. The sparseness of patterns indicates that more pat-

terns can be stored and retrieved with less energy. This will

prove to be useful while building a hardware equivalent of

the network.

6 Conclusion

Designing a network which is functionally similar to the

network in our brain is the ultimate way to understand how

the brain works and also to achieve human-level intelli-

gence in machines. As a promising step toward achieving

this goal, the results obtained are in accord with the

inference provided by experiments conducted on actual

brain tissue from the hippocampus region. An increase of

38% in storage capacity is achieved in the presence of

Dentate Gyrus. The error tolerance capability of the net-

work decreases by 15%, while trying to achieve better

performance when overlapping patterns are involved.

The network is a fully connected one and can be further

improved by adapting more biologically feasible features.

For example, the synapse-to-neuron ratio can be varied

across layers, network dilution can be set at different levels

based on the actual biological network, and the computa-

tion of weight and activation can be parallelized in order to

realize a network of higher magnitude. Due to the lack of

clarity in the current literature, designing a prototype which

is an actual replica of the biological neural network is not

possible in the near future. This work hopes to start off as

an initial step toward achieving that goal.
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